12:th EUROPEAN TURBOMACHINERY CONFERENCE 3-7 April 2017, Stockholm

Turbomachinery Aeroacoustics

Mats Åbom

KTH-The Royal Inst of Technology

The Marcus Wallenberg Laboratory for Sound and Vibration Research (MWL) SE-100 44 Stockholm, Sweden

> matsabom@kth.se orcid.org/0000-0001-7898-8643

Content

- Aeroacoustics?
- Sound from moving sources FWH equation
- Aerodynamic source strength scaling laws
- Sound from Turbomachines
- Acoustic installation effects
- Multi-port characterization of Turbomachines
- Experimental investigation of surge
- Numerical investigation of surge
- Summary and conclusions

AEROACOUSTICS?

Cooling fans and turbo-chargers on cars and trucks

Ventilation fans for vehicles and buildings

Gasturbines for aircrafts and powerplants

Wind instruments – flutes, organs, ...

Started around 1950's related to noise issues with the then new jet powered civil aircrafts...

$$\frac{1}{c_0^2} \frac{\partial^2 p'}{\partial t^2} - \nabla^2 p' = s$$

Lighthills acoustic analogy

Sir Michael JAMES Lighthill FRS (1924-1998)

Limitations in Lighthill's theory

Lighthill or linear Aero-Acoustics is OK

Alt. 1: Sound production by a flow.

Alt. 2: Sound-vortex interaction (dissipation/amplification).

Alt. 3: Whistling (Non-linear Aero-Acoustics)

SOUND FROM MOVING SOURCES – FWH Equation

Ffowcs-Williams Hawkings equation is a reformulation of Lighthills acoustic analogy for moving bodies..

The motion (body surface) is described by a function $f(\mathbf{x},t)=0$ and it is further assumed that f < 0 inside the body and f > 0 outside.

Volume displacement ~ Monopoles

Fluctuating pressures ~ **Dipoles**

Unsteady Reynolds stresses or transport of momentum ~ Quadrupoles

$$\left(\frac{1}{c_0^2}\frac{\partial^2}{\partial t^2} - \nabla^2\right)(p'H) = \frac{\partial}{\partial t}(\rho_0 V_l n_l | \nabla f | \delta(f)) - \frac{\partial}{\partial x_l}(p'n_l | \nabla f | \delta(f)) + \frac{\partial^2}{\partial x_l \partial x_j}(\rho u_l u_j H(f))$$

AERODYNAMIC SOURCE STRENGTH – SCALING LAWS

For aerodynamically generated sound the time averaged sound power \overline{W} will scale as:

$$\overline{W} \sim \rho U^3 D^2 M^{\alpha+n}$$

where *M* is Mach-number, *n* the space dimension (1,2,3) and:

$$\alpha = \begin{cases} -2, monopole \\ 0, dipole \\ 2, quadrupole \end{cases}$$

AERODYNAMIC SOURCE STRENGTH – SCALING LAWS

For aerodyr For a dipole we will get sound power

averaged

$$W \sim U^{4-6}$$

where *U* is the flow speed

where *M* is Mach-number, *n* the space dimension (1,2,3) and:

$$\alpha = \begin{cases} -2, monopole \\ 0, dipole \\ 2, quadrupole \end{cases}$$

Relative sound power W from aeroacoustic sources

SOUND FROM TURBOMACHINES [2-5,13]

There are two basic types axial and radial. For both types the sound generation can be classified using Lighthills analogy....

Example - sound pressure compressor inlet

A compressor rotating with N RPM will generate harmonics of its Blade Passing Frequency (BPF):

BPF = $B \cdot N/60$, where B is the number of main rotor blades.

Averaged sound pressure level in the compressor inlet duct after "T.Raitor and W.Neise (2006), Sound Generation in Centrifugal Compressors, 12th AIAA/CEAS Aeroacoustics Conference".

Example - sound pressure compressor inlet

A compressor rotating with N RPM will generate harmonics of its Blade Passing Frequency (BPF):

BPF = $B \cdot N/60$, where B is the number of main rotor blades.

Averaged sound pressure level in the compressor inlet duct after "T.Raitor and W.Neise (2006), Sound Generation in Centrifugal Compressors, 12th AIAA/CEAS Aeroacoustics Conference".

ACOUSTIC INSTALLATION EFFECTS ("No free-field")

• In the low frequency (plane wave) range ($f < f_{cut-on}$) a source is strongly coupled to a system and the acoustic output (power) can vary strongly.

- In the mid frequency range up to $(2-3)x f_{cut-on}$, plane + non-plane waves exist. Also in this range strong coupling between source and system is possible.
- In the high frequency range $f > 3xf_{cut-on}$, sound propagates as rays, there is no coupling between a source and a system and the acoustic power equals the free field value.

ACOUSTIC INSTALLATION EFFECTS ("No free-field")

• In the low frequency (plane wave) range ($f < f_{cut-on}$) a source is strongly coupled to a system and the acoustic output (power) can vary strongly.

- In the mid frequency range up to $(2-3)x f_{cut-on}$, plane + non-plane waves exist. Also in this range strong coupling between source and system is possible.
- In the high frequency range $f > 3xf_{cut-on}$, sound propagates as rays, there is no coupling between a source and a system and the acoustic power equals the free field value.

ACOUSTIC INSTALLATION EFFECTS ("No free-field")

• In the low frequency (plane wave) range ($f < f_{cut-on}$) a source is strongly coupled to a system and the acoustic output (power) can vary strongly.

• In the mid frequency range up to $(2-3)x f_{cut-on}$, plane + non-plane waves exist. Also in this range strong coupling between source and system is possible.

• In the high frequency range $f > 3xf_{cut-on}$, sound propagates as rays, there is no coupling between a source and a system and the acoustic power equals the free field value.

Soupled models required

ACOUSTIC INSTALLATION EFFECTS ("No free-field")

• In the low frequency (plane wave) range ($f < f_{cut-on}$) a source is strongly coupled to a system and the acoustic output (power) can vary strongly practice the limit is around 10 propagating

stronglin practice the limit is around 10 propagating

where k is the wave-number and d the duct In the mid frequency range up to (2-3)x f_{cut-on}, plane + non-plane waves exist. Also in this range strong coupling between source and system is possible.

• In the high frequency range $f > 3xf_{cut-on}$, sound propagates as rays, there is no coupling between a source and a system and the acoustic power equals the free field value.

MULTIPORT CHARACTERIZATION OF TURBOMACHINES [1,12-13]

Stefan Sack and Mats Abom

KTH - The Royal Institute of Technology, Stockholm, Sweden

Multi-Port approach

The sound field pressure (p) inside the duct is a **superposition** of acoustic **eigen-modes**

$$p(x, y, z) = \sum_{n} (\hat{p}_{+n} \Psi_n(x, y) \exp(-ik_{+z,n}z) + \hat{p}_{-n} \Psi_n(x, y) \exp(ik_{-z,n}z))$$

Multi-Port approach (Frequency domain)

We define a network ("black box") model assuming a linear and timeinvariant system relating the mode amplitudes in +/- direction

$$\mathbf{p}_{+}(f) = \mathbf{S} \, \mathbf{p}_{-}(f) + \mathbf{p}_{+}^{s}(f)$$

- S Scattering Matrix ("passive part")
- \mathbf{p}_{+}^{s} Source vector ("active part")

<u>See:</u> **S. Sack, M. Abom and G. Efralmsson (2016)**. On Acoustic Multi-Port Characterisation Including Higher Order Modes. Acta Acustica united with Acustica vol. 102, 834-860.

Test rig built by VKI & KTH

Axial compressor spectrum

- Axial compressor
 with strong BPF
 (2700 Hz) and higher
 order mode content
- The (0,0) & (2,0)
- modes are
- particularly strong

Advantages (Experimental/Numerical) of the Multi-Port Method

- The effects of boundary conditions are eliminated i.e. reflection free source data can be determined
- Projecting the pressure field on the acoustic modes will also suppress Hydrodynamic pressure fluctuations

Fan measurements as part of the IdealVent project

Advantages (Experimental/Numerical) of the Multi-Port Method

ninated i.e.

hodes will

tuations

- The ef reflecti approach is restricted to the low- and mid-frequency range or (say) 10 modes
- Complex systems can be broken down into sub-elements each described by a multi-port

Competence Center for Gas Exchange (CCGEx) www.ccgex.kth.se

- Research focus on the gas management of IC engines.
- Combined effort between KTH, the Swedish Energy Agency and some leading OEMs.
- Main research fields are fluid mechanics and acoustics.

EXPERIMENTAL INVESTIGATION OF SURGE [9]

Raimo Kabral

Mats Åbom, Hans Bodén and Magnus Knutsson (Volvo CC)

KTH-CCGEx Acoustic Testrig [6]

Compressor used in experiments

- Passenger car turbocharger Garrett GT1752 driven by the compressed air feed to the turbine.
- Inlet diam. is 44mm.
- Outlet diam. is 42mm.
- The rotor has 6 (+6 splitter) blades.
- Shaft frequency ~80...180kRPM – blade pass frequency 8...18kHz.

Acoustic 2-port formulation

$$f_c = \frac{1.814 \cdot c}{\pi d}$$

• The acoustical performance of a flow duct element is determined by the full 2-port model which consists both the passive and the active parts.

Reflection-free sound generation

$$\boldsymbol{G^{s}} = \boldsymbol{p_{s}}(\boldsymbol{p_{s}'})^{\dagger} = \begin{bmatrix} G_{p_{a}^{s}p_{a}^{s}} & G_{p_{b}^{s}p_{a}^{s}} \\ G_{p_{a}^{s}p_{b}^{s}} & G_{p_{b}^{s}p_{b}^{s}} \end{bmatrix}$$

Sound generation of the compressor

- The following can be observed while operating close to deep surge:
 - a large (up to 25dB) broadband increase of SPL;
 - an additional generation of sound at ~.5 of shaft rotating order.

Aero-acoustic coupling

- From the S-matrix dissipation (-)
 or amplification (+) of the
 compressor can be computed.
- The data shows that approaching surge amplifying flow instabilities, e.g., at ~0.5 RO occur. But the overall losses still dominate.
- The only possibility for a self sustained oscillation ("strong surge") is below 100 Hz.

NUMERICAL ("LES") INVESTIGATION OF SURGE [10]

Elias Sundström and Mihai Mihaescu

Royal Institute of Technology (KTH)
School of Engineering Sciences, Dept. of Mechanics
Competence Center for Gas Exchange (CCGEx)

E-mail: mihai@mech.kth.se

Web: https://www.kth.se/profile/mihaescu/

Investigated Compressor: GT40 Turbo

- Problem: Instabilities at low mass flow rates which limit the compressor range of operation
- Ported Shroud solution used to extend this range

unequally spaced ribs

urbo compatibility	Heavy truck engine	Garrett Engine Boosling Systems	
ower range	400 to 850 kW	Ported Shroud Surge Line	
mber of blades	10 full blades	Non-Ported Shroud Surge	
kducer diameter	88 mm		
RIM	56	19 20 20 20 20 20 20 20 20 20 20 20 20 20	
iffuser area ratio	0.57	24	
for Surge	Control Orted shroud compress	TITLE: 0746 Q TRIM 94 MM DECORDE DE ARE FINCHEL AND MODICA The distribution control in point of the control o	$= \frac{N_{ex}}{\sqrt{T_{ex}} \cdot 7545} w^{*} = \frac{w \cdot \sqrt{R_{ex} \cdot 7545}}{R_{ex} \cdot 7584}$

Acoustic pressure spectra

- SPL amplitude amplifies towards surge
- Broadbanded features around 0.5RO and 3RO, in agreement with other observations, e.g. Evans D. and Ward A., SAE2005-01-2485; Teng C. and Homco S., SAE2009-01-2053

Sundström, Semlitsch & Mihaescu, AIAA Paper, AIAA 2015-2674, 2015.

Near-surge (B): 0.070kg/s

DMD / surge (case A) - Velocity

- Quantification of flow instabilities observed
- Dynamic Mode Decomposition at surge (case A)

Surge (43 Hz, pulsating)

0.5RO (rotating stall in the diffuser)

Frequency Surface Pressure Spectra / surge (case A)

Sundström, Semlitsch & Mihaescu, AIAA Paper, AIAA 2015-2674, 2015.

Connection between flow and acoustics (case A)

- FWH integrated assuming free space flow between source and receiver
- Surface integrals Thickness (monopole) and Loading noise (dipole)

SUMMARY

 The dominating aeroacoustic source from turbomachines is fluctuating forces (-dipoles) ONLY for supersonic tip speeds will volume flow sources (-monopoles) become important.

 The dipole source strength is strongly dependent of inflow disturbances ("Aerodynamic installation effects").

 The sound power at low to intermediate frequencies depends also on Acoustic installation effects ("Modal/Resonant response").

Summary-Work at KTH

- Recent work on multi-port methods have demonstrated their potential (exp/num) to deliver "refection-free" turbomachinery source data.
- A unique acoustic turbo testrig for measuring complete 2-port data has been developed.
- High fidelity CFD ("compressible LES") is applied in particular towards quantification of acoustic noise sources at off-design operating conditions
- Both the experimental and numerical work have created interesting new insights to surge inception.

New efficient type of Micro-Perforated Plate (MPP) Silencers for Turbomachines [8,11]

Reference list

- 1. Bodén, H. and Åbom, M., 1995. Modelling of fluid machines as sources of sound in duct and pipe systems. Acta Acustica 3, Dec., pp. 1-12.
- 2. Bodén, H. and Åbom, M., 2003. On acoustic fan installation effects: Summary of work done at MWL. Fan Noise 2003, Int. Conference, CETIM, France.
- 3. Berglund P.O., (2003). Investigation of acoustic source characterisation and installation effects for small axial fans. Lic. Tech thesis KTH, TRITA-FKT 2003:02.
- 4. Frid, A., Åbom, M., Jiang, Y., Wang, Y. and Fehse, K-R., 2007. Cooling fans in railway vehicles _ Applications of noise control measures in a roof-mounted engine cooler. Fan Noise 2007, Int. Conference, Lyon.
- 5. Rämmal, H. and Åbom, M., Acoustics of Turbochargers, SAE Technical Paper 2007-01-2205, 2007, doi:10.4271/2007-01-2205.
- 6. Tiikoja, H., Rämmal, H., Åbom, M., and Boden, H., 2011. Investigations of Automotive Turbocharger Acoustics, SAE Int. J. Engines 4(2):2531-2542.
- 7. Allam, S. and Åbom, M., (2012). Noise control for cooling fans on heavy vehicles. Noise Control Eng. Journal 60(6), Nov-Dec, pp. 707-715.

Reference list

- 8. Kabral, R., Du, L., Knutsson, M. and Åbom, M., 2014. A compact silencer for the control of compressor noise. SAE International Journal of Engines 7 (2014-01-2060), 1572-157.
- 9. Åbom, M. and Kabral, R., 2014. Turbocharger noise generation and control. SAE paper 2014-36-0802.
- 10. Sundström, E., and Mihaescu, M., 2015. Centrifugal compressor: The Sound of Surge. 21st AIAA/CEAS Aeroacoustics Conference, Dallas, At Dallas, Texas, USA, Volume: 2015-2674.
- 11. Sack, S. and Åbom, M., 2016. Modal filters for in duct sound based on the Cremer impedance and micro-perforated plates. Proc. Inter-Noise Hamburg 2016.
- 12. Sack, S., Åbom, M. and Efraimsson, G., 2016. On acoustic multiport characterization including higher order modes. Acta Acoustica united with Acustica, ISSN 1610-1928, Vol. 192, nr 5, 834-850.
- 13. M. Schur et. Al, Effect of Inlet Distortions on a Ducted Fan Noise, AIAA-CEAS AeroAc Conference 2016.